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TEMPERATURE FIELD OF LAMINAR-INHOMOGENEOUS BEDS 

N. N. Smirnova UDC 536.242:66.015.23 

Results are presented of a theoretical investigation of the temperature field of 
oil beds with a nonuniform structure, with applications in the technology of 
selective thermoinjection. 

Heat transfer accompanying the filtration of liquid in permeable media is the physical 
basis of many processes in mining, the power industry, and chemical engineering. 

The formulation of multidimensional problems is a particularly urgent matter. Such 
problems include those concerning filtration in an infinite porous medium with point sources 
and sinks and in a plane porous bed with heat transfer to the roof and floor; problems for 
collectors of different form, taking free convection into account; etc. 

A possible approach to the solution of such problems consists in the use of the idea of 
"homogenization" of the heterogeneous medium [I], analogously to the methods of the mechan- 
ics of interpenetrating media [2] or in the approximation of instantaneous temperature 
equalization of the two phases [3]. On this basis, fairly many problems may be solved, hut 
in practice they give rise to a series of serious objections. For example, one unsolved 
problem is the choice of the heat-transfer coefficient at the interface of the two phases, 
since this is not simply the heat-transfer coefficient between the individual elements of 
the filling and the liquid, but a coefficient or function which must take into account all 
the arbitrariness of the given approach. In addition, the transfer coefficients in the equa- 
tions are not actually the weighted means of the molecular coefficients, as concluded, for 
example, in [4, 5]. 

Processes of nonsteady heat transfer accompanying one-dimensional filtration in fillers 
consisting of small particles with low thermal resistance are usually described using the 
formulation of the problem first proposed in [6, 7]. However, the results obtained are dif- 
ficult to use in developing engineering methods of calculation for the heat transfer in more 
complex multidimensional filtration regions. 

In [8], the problem of describing the heat conduction for an analogous physical situa- 
tion was considered in more detail on the basis of a generalized equation for one dependent 
variable obtained in [8]. 

In mining thermophysics (in developing methods of creating systems for the extraction 
of petrogeothermal resources, and also thermal methods of treating petroleum beds, etc.), 
it is necessary to develop a method of calculating the heat transfer accompanying filtration 
in collectors of complex geometry with large structural elements. In constructing the model 
in this case, it is more correct to use a formulation of the problem in which the finite 
heat conduction of the elements of the permeable bed is taken into account (see, e.g., [9- 
ii]). A more detailed review of methods of calculating the nonsteady heat transfer accom- 
panying one-dimensional filtration is given in [12]. 

The use of accurate solutions of heat-conduction problems for particles of the bed and 
the surrounding rock mass reduces the system of energy equations to an integrodifferential 
equation, which is not readily generalized to the case of multidimensional filtration. 
Therefore, in [12], a new approach to the solution of problems of this type was proposed. 
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Fig. i. Physical model of heat transfer in a 
laminar-inhomo gene ous bed. 

In the present work, its specific application in describing the temperature field of a 
petroleum bed of nonuniform structure is demonstrated. 

In [13], the technology of selective thermoinjection of laminar-inhomogeneous beds was 
described, and the results of laboratory investigations were given. There are no analytical 
solutions for this scheme. A physical model of the problem corresponding to the given tech- 
nology is shown in Fig. i. 

Hot heat carrier at a temperature to is injected into the highly permeable layer, dis- 
placing petroleum from it, and simultaneously increasing the temperature of the adjacent, 
relatively impermeable layers. Some of the heat thus introduced goes to heating of the 
skeleton of the highly permeable porous layers. The mean over the permeable-layer cross 
section of the dimensionless temperature of unit volume of liquid will be given by the heat- 
balance equation , 

~. O0 O0 
CLPL ~-T "]- CL PL U OX = c;qi q- qJb, (1) 

which must be s o l v e d  t o g e t h e r  wi th  i n i t i a l  and boundary c o n d i t i o n s  of  the  form 

0 =  1 when x = 0 ;  0 - - 0  when T,* ----- "r, - -  X/tt ~ O. (2) 

Here hea t  t r a n s f e r  between the  phases  i s  taken i n t o  account  by i n t r o d u c i n g  i n t e r n a l  hea t  
sources  in  the h e a t - b a l a n c e  e q u a t i o n  of  the  l i q u i d  phase ,  r e p r e s e n t e d  by the  s p e c i f i c  hea t  
f l u x e s  qz ( to  the  s u r f a c e  of  p a r t i c l e s  in  the  porous l a y e r )  and q2 ( to  the  " impermeab le"  
l a y e r s ) .  

The heat fluxes q l and q2 are determined from the solution of the corresponding heat- 
conduction problems for a sphere and a plate, taking account of the finite rate of inter- 
phase heat transfer and the time-variable temperature of the surrounding medium [14]. Sub- 
stituting these solutions into Eq. (i) allows the problem in Eqs. (i) and (2) to be rewrit- 
ten in the form 

00 00 I 2~'I CI E 0 ( 0 ( ~ ) e x p  [--~2 ai ( . ~ ,  o~)/l~] dxo -[- Dn2aXp ~ ~ f O(co) 
(3)  

O 
0 0 

exp [ - -  ~ a p ( x *  - -  o~)/R~]do~}, 

x (4) 
0 = 1 when x = 0,  0 = 0 when T* = 7 - -  ~-~0.  

u 

Using the method of the "equivalent" heat-conduction equation [12], the integrodiffer- 
ential Eq. (3) (in dimensionless form) is brought to the form 

ao  1 a o  B azo 
- -  + - -  - -  - (5) 

0 F o *  AG I OX A 0 F o  *z 

T h e  i n i t i a l  a n d  b o u n d a r y  c o n d i t i o n s  a r e  
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Fig. 2. Temperature change at the center of a relatively 
impermeable layer over time (a) with GIX = 50 (I), i00 (2) 
and 150 (3), and over the length (b) with Fo = 70 (i), 150 
(2), and 230 (3); Y =0. 

0 = 1 when X = 0, 0 = 0 when F o * ~ 0 ,  0 = 1 as F o * - + o o .  (6 )  

The solution for the liquid temperature is obtained by the method of Laplace transformation, 
and takes the form 

0 i ) 2" V - ~  + e x p  . . . .  Fo* erfc 
B 2 }/B-OIX . '  

whe re 

Gp Gp ~p 
A=Ap--~I + A I ;  B=Bp OI ~I + B I .  

The coefficients ~, Bp and AI, B I for boundary conditions of the third kind are calculated 
from the following formulas 

(__ 1).+i 2 B i ~ / ~  + (Bip - -  1) 2 sin ~. 
Ap 

n = l  (~I + Bi2 - -  Bi ) ~2 ' p p n 

(7) 

' ~ 7  ( _  1)~+1 2Bi~V'~ + (Bip--  1) z sin[5~ 
Bp 

n=l ([~2n + B i ~ - -  Bip) [3 4 ' 

2Bi I V-~-~ + ~ sin ~,~ 
AI = (-- l)n+l (Bi I + Bi{ + ~n 2) F2n ' 

n = l  

X 2 Bi I ~/'Bi~ + ~ sin l~,~ 
B I ( -  1)n+ 1 o 

(Bi~ + Bi I + ~t  # 
t ~ =  1 n 

On and Bn are found from the solution of the equations 

1 i 
c t g l ~ , ~ - - - -  V,,, tgl~,~-- I3,~. 

Bi I Bip 7 1 

On the basis of the Duhamel theorem, the solution for the dimensionless temperature of the 
relatively impermeable layer may be written in the form 

(8) 

(9) 

Fo ~ 

O ;O(Q, X){1--E K,~cos(~t,~y) exp[_~(Fo*_f2)]}d~Q" (10) t~ (Fo*, X, Y) = 0 Fo - - - -~  
O n=l 

Transforming the solution in Eq. (I0) by means of the results of [12] gives the relation 

O0 020 t~ (Fo*, X, Y) = 0 (Fo*, X) - -  K~ ~ 4- K~ 
O Fo *z 

(11) 
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The solution for the liquid temperature 0 is known -- Eq. (7); the coefficients KI and K2 
are defined by the expressions 

Kt = E (--1)"+~ 
n ~ l  

/('2 = ' ~  (-- 1) n+l 
n =  1 

2 Bi I ~/Bi{ -6 ~n 2- cos (~nY) 

~ (Bii2 + Bi I + P~) 

2 Bi I 1/'N~. + ~.  cos (#~Y) 

~,~ (Bi~ -}- Bi I -t- ~]) 

(12) 

The temperature distribution in the impermeable layers is shown in Fig. 2 for the following 
values of the parameters determining the process: Tp =18-10-6; T I=9; Gp=8; GI=0.4; Bi I = 
0.3; Bip = 0.005. Thus, for example, the time for which hot water of temperature to must be pumped 
through the porous layer in order to heat the "impermeable" layer (Y = 0) to a temperature 
ensuring a sharp increase in viscosity of the petroleum or a specified increase in the 
petroleum extraction may be determined from Fig. 2a. 

From Fig. 2b, the extent of the "impermeable" layer heated to the technologically 
required temperature at a specific moment of time is determined. Of course, the curves in 
Fig. 2 only show an example of a calculation by the proposed formula, and do not cover the 
whole range of parameters encountered in practice. 

NOTATION 

x, y, longitudinal and transverse coordinates; T, time; t, liquid temperature; T, 
temperature of layers; To, initial temperature of the layer; to, liquid temperature at the 
inlet; u, actual velocity; b, half-height of highly permeable layer; Ii, half-height of 
relatively impermeable layer~ Rp, particle radius of layer; ~, surface area of layer par- 
ticles per unit volume of injected liquid; %I, aI, effective thermal conductivity and ther- 
mal diffusivity of relatively impermeable layers; %p, ap, thermal conductivity and thermal 
diffusivity of layer particles; ~I, heat-transfer coefficient to the walls of the relatively 
impermeable layers; ~p, heat-transfer coefficient to layer particles; PL, CL, density and 
specific heat of liquid; PI, cI, density and specific heat of relatively impermeable layers; 
e =t -- To/to -- To, dimensionless temperature of liquid; ~ = (T -- To)/(to -- To), dimen- 
sionless temperature of relatively impermeable layers. Dimensionless complexes: Fo* = Fo -- 

2 
X; FO=alT/l~; X=alX/llu; Y=y//l; Tp=R~/ap; T I =l~/al, G I =llplcl/b0LcL; Gp =RPogPcP/ 
OLCL; Bi I =al/i/Zl; Bip =apRp/Xp. 
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COUPLED PROBLEM OF HEAT TRANSFER, HYDRODYNAMICS, 

AND SOLIDIFICATION IN A }~LT 

Yu. A. Samoilovich and L. N. Yasnitskii UDC 536.252 

A mathematical model is constructed which describes thermal and hydrodynamic pheno- 
mena accompanying the solidification process in a melt. The equations of hydrody- 
namics take into account viscoelasticity and compressibility of liquid metal. An 
example of calculations pertaining to solidification of an ingot is given. 

Motion of the melt in the still liquid part of a crystallizing ingot greatly affects 
the quality of the metal product. Many studies have, therefore, been made concerning con- 
vective flow in the liquid core of ingots [1-7]. 

In several studies [1-6] the equations of heat conduction and of melt motion were solved 
independently of the solidification problem, i.e., for a given configuration and with the 
interphase boundaries moving according to a given law. In one study [7] a mathematical model 
has been proposed which, through a coupled formulation of the problems of hydrodynamics, heat 
transfer, and solidification, accounts for the interdependence between the form of the 
crystallization front and the mode of thermogravitational convection developing in the liquid 
phase of the ingot, both varying in time. A numerical simulation of this model [7] is 
filled with additional difficulties in connection with satisfying the Stefan condition at 
a movable and generally curvilinear crystallization front. In this study we will supplement 
the coupled formulation of those problems with the concept of a two-phase zone [8] and will 
account for the release of the latent heat of crystallization within this zone by stipulat- 
ing an effective (apparent) specific heat. 

In the previous studies [1-7] the flow of liquid steel was calculated through solution 
of the system of Navier--Stokes equations. At large temperature drops typical of metallur- 
gical processes, the flow of the melt ceases to be laminar, however, and becomes a nonsteady 
fluctuating one. Under these conditions, moreover, the liquid can exhibit properties not 
included in the Navier--Stokes law. We propose to replace the Navier--Stokes equations with 
equations of motion based on the Maxwell law of viscoelasticity and an equation of state of 
the medium involving a pressure dependence of the density, i.e., accounting for the compres- 
sibility of the medium. 

In this way the coupled problem of heat transfer, hydrodynamics, and melt solidification 
is formulated in three segments: 

i) problem of heat transfer involving the liquid phase and the solid phase of an ingot 
and taking into account the release of heat of phase transition within the liquidus-- 
solidus temperature range TZ-Ts; 

2) problem of hydrodynamics involving the motion of a compressible viscoelastic liquid 
in the still unsolidified part of the ingot and taking into account a nonuniform tem- 
perature profile as well as the attendant Archimedes body forces; 

3) conditions of coupling between the thermal problem and the hydrodynamic problem at 
the interphase boundary. 
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